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Abstract

The Collatz conjecture posits that iterating the map T (n) = n/2
if n is even and T (n) = 3n + 1 if n is odd eventually leads to 1 for
all positive integers n. Heuristic arguments supporting the conjecture
often rely on the assumption that the map behaves pseudo-randomly,
leading to an expected decrease in magnitude. A key component is the
distribution of the 2-adic valuation v2(3n + 1) for odd n. This paper
rigorously computes this distribution using natural density, proving
the density of odd n with v2(3n + 1) = k is 2−k for each k ≥ 1. This
confirms E[v2(3n + 1)] = 2, providing a formal basis for the heuristic
downward drift argument (2 > log2 3). We discuss implications and
limitations of density results. Motivated by this and the shortcom-
ings of static potential functions, we propose a novel state-augmented
potential function framework, incorporating trajectory history via the
previous step’s valuation (kprev), to better model the effects of tran-
sient carry-bit dynamics and overcome limitations of static functions.

1 Introduction

The Collatz conjecture, also known as the 3n + 1 problem, concerns the
iteration of the function T : N → N defined by

T (n) =

{
n/2 if n is even

3n+ 1 if n is odd.

The conjecture asserts that for every starting integer n ≥ 1, the sequence of
iterates n, T (n), T (T (n)), . . . eventually reaches the cycle 4 → 2 → 1. De-
spite its simple statement, the conjecture remains unproven and is famously
difficult [3].
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Much intuition stems from heuristic arguments suggesting iterates de-
crease ”on average”. A crucial element is the map Todd : O → O for odd
n:

Todd(n) =
3n+ 1

2v2(3n+1)
, (1)

where v2(m) is the 2-adic valuation. The magnitude change is roughly
log2(3)− v2(3n+1). Heuristics often assume v2(3n+1) follows P (k) ≈ 2−k,
leading to E[v2(3n+ 1)] ≈ 2. Since 2 > log2(3) ≈ 1.58, this suggests an av-
erage decrease, supported by computational evidence and results on density
[5] and boundedness [4].

The first goal here is to provide a rigorous basis for this heuristic by
computing the exact natural density distribution of v2(3n+ 1).

Our main result is:

Theorem 1.1. Let O = {1, 3, 5, . . . }. For each integer k ≥ 1, the natural
density of Sk = {n ∈ O | v2(3n+ 1) = k} within O is 2−k.

This confirms E[v2(3n+1)] = 2 under this measure. Yet, density results
fall short of universal proof, and static potential functions struggle with the
discontinuous dynamics [Lagarias2010]. Thus, recognizing these limitations,
we propose a novel state-augmented framework for constructing a potential
function, aiming to capture the influence of transient carry-bit dynamics
more effectively.

2 Preliminaries

Definition 2.1 (2-adic Valuation). For m ∈ Z \ {0}, v2(m) is the exponent
of the highest power of 2 dividing m. v2(0) = ∞.

Definition 2.2 (Natural Density on Odd Integers). For S ⊆ O, δ(S) =
limm→∞ |{n ∈ S | n ≤ 2m − 1}|/2m−1, if it exists.

3 Distribution of v2(3n+ 1): Proof of Theorem 1.1

Lemma 3.1. For odd n, v2(3n + 1) = k ⇐⇒ 3n ≡ −1 (mod 2k) and
3n ̸≡ −1 (mod 2k+1).

Proof. Equivalent to 3n+ 1 ≡ 2k (mod 2k+1).

Lemma 3.2. For k ≥ 1, ak = −3−1 (mod 2k) exists, is unique, and is odd.

Proof. Inverse exists as gcd(3, 2k) = 1. If 3n ≡ −1 (mod 2k), then gcd(n, 2k) =
1, so n is odd.
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3.1 Examples for k=1, k=2, and k=3

We summarize the density calculation for small k:

Example 3.3 (Case k=1). Condition n ≡ 3 (mod 4). Proportion = 1/2.

Example 3.4 (Case k=2). Condition n ≡ 1 (mod 8). Proportion = 1/4.

Example 3.5 (Case k=3). Condition n ≡ 13 (mod 16). Proportion = 1/8.

3.2 General Proof

Proof of Theorem 1.1. Let ak = −3−1 (mod 2k) and ak+1 = −3−1 (mod 2k+1).
The condition v2(3n+1) = k is n ≡ ak (mod 2k) and n ̸≡ ak+1 (mod 2k+1).
The condition n ≡ ak (mod 2k) defines two odd classes mod 2k+1: ak+1 and
a′k = ak+1 + 2k (mod 2k+1). The class ak+1 yields v2 ≥ k + 1; the class a′k
yields v2 = k. Thus, v2(3n + 1) = k is equivalent to n ≡ a′k (mod 2k+1), a
single odd class. Form ≥ k+1, this condition defines 2m−(k+1) classes among
the 2m−1 odd classes modulo 2m. The proportion is 2m−k−1/2m−1 = 2−k.
This is independent ofm form ≥ k+1. The natural density δ(Sk) = 2−k.

Remark 3.6 (Finite Moduli Behavior). The proportion is exact for moduli
2m with m ≥ k + 1.

Remark 3.7 (Density vs. Finite Intervals). Density over [1, X] might show
deviations.

4 Discussion and Implications

4.1 Expected Value of v2(3n+ 1)

Corollary 4.1. E[v2(3n+ 1)] = 2 under the natural density measure.

Proof.
∑∞

k=1 k · δ(Sk) =
∑∞

k=1 k · 2−k = 2.

Supports heuristic average decrease ≈ log2 3−2 ≈ −0.415 bits/odd step.

4.2 Implications for Collatz Approaches

• Supports pseudo-random / ergodic models [5, 4].

• Highlights importance of carry dynamics [6].

• Provides statistical constraints against cycles.

4.3 2-adic Perspective

Arises naturally from Haar measure on Z∗
2 [2]. Todd is measure-preserving.

Non-zero integral of v2(3x + 1) − log2 3 shows it is not a coboundary, sup-
porting ergodic negative drift µ-a.e. Bridging to N+ remains open.
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4.4 Limitations

Density results don’t prove universal convergence [1]. Static potential func-
tions fail, often due to insufficient state information [3].

5 Toward a State-Augmented Potential Function

The limitations motivate exploring potential functions incorporating more
state, aiming to model carry effects. We propose a **state-augmented (or
history-augmented) potential function** framework.

Definition 5.1 (Augmented State). For n ∈ O, n > 1, if n ̸= n0, let
n = Todd(nprev). The state includes n and kprev = v2(3nprev + 1). For the
initial n0, a convention is needed; for simplicity, we suggest setting kprev = 2
(the expected value) as a default, although optimal initialization might depend
on n0 (mod 2J) and requires further analysis.

Definition 5.2 (Hypothetical State-Augmented Potential Function Form).
We hypothesize f depending on this state, possibly:

f(n, kprev) = log2 n+Ψ(n (mod 2J), kprev)

for large J , with f(1, ·) = 0.

The Lyapunov requirement is: for n → n′ = (3n + 1)/2k with k =
v2(3n+ 1),

f(n′, k) ≤ f(n, kprev) (2)

implying the condition on Ψ:

Ψ(n (mod 2J), kprev)−Ψ(n′ (mod 2J), k) ≥ log2(3 + 1/n)− k

Illustrative Example of Ψ: The simple form Ψ(a, kprev) = C − c · kprev
fails. A viable Ψ likely requires more complex dependence on its arguments.
Future work might explore Ψ with terms like c ·kprev ·ϕ(n (mod 2J)), where
ϕ might weight residue classes based on their influence on subsequent carry
dynamics or 2-adic properties.

Potential Interpretation and Advantages: Allows potential Ψ to de-
pend explicitly on the previous step’s outcome (kprev), potentially tracking
”energy” storage/release better than static functions.

Challenges and Novelty: Defining and analyzing Ψ is the main chal-
lenge. Proving inequality (2) universally is the goal. Incorporating history
via kprev is a **novel conceptual direction**, addressing limitations of static
functions by accounting for transient carry outcomes.
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6 Conclusion

We rigorously established the 2−k natural density for v2(3n + 1) = k, con-
firming E[v2(3n + 1)] = 2. This grounds heuristic arguments but doesn’t
resolve the conjecture. The failure of standard potential functions under-
scores the need to model the discontinuous carry dynamics more accurately.

We propose a novel framework exploring state-augmented potential func-
tions, f(n, kprev), incorporating memory via kprev. This approach aims to
model the system’s dynamics more faithfully than static functions. While
constructing and validating such a function is challenging, this direction
offers a potential path forward, meriting further investigation.
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