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Abstract

The Collatz conjecture asserts that repeated application of a simple arithmetic function to
any positive integer eventually leads to 1. This paper introduces a state-augmented system
X = Z+

odd × (Z/4Z) to analyze the ”shortcut” Collatz map, which operates on odd positive
integers. By explicitly tracking an integer’s residue modulo 4, we precisely determine the 2-adic
valuation of 3s + 1. We demonstrate that any sequence starting from an odd positive integer
s0 > 1 either directly reduces to a Collatz sequence on a smaller integer m < s0 (if s0 ≡ 1
(mod 4)), or, after a finite and bounded number of steps (at most val2(s0 + 1) − 1, if s0 ≡ 3
(mod 4)), transitions to a state from which it reduces to a Collatz sequence on an integer m∗.
The proof of the full Collatz conjecture then hinges on the property that thism∗ (or a subsequent
term in its own Collatz sequence) is eventually less than the original s0, a property equivalent
to the core ”eventual descent” aspect of the Collatz conjecture. This framework thus provides
a clear structural decomposition and reduction of the problem.

1 Introduction

The Collatz conjecture, also known as the 3n+ 1 problem, concerns the behavior of iterates of the
function f : Z+ → Z+ defined by:

f(n) =

{
n/2 if n is even

3n+ 1 if n is odd

The conjecture states that for any starting positive integer n, the sequence n, f(n), f(f(n)), . . .
eventually reaches the integer 1.

It is often convenient to study a ”shortcut” version of the Collatz map that jumps directly to
the next odd integer.

Definition 1.1 (Shortcut Collatz Map TC). For an odd positive integer s ∈ Z+
odd (where Z+

odd =
{n ∈ Z+ | n is odd}), the shortcut Collatz map TC : Z+

odd → Z+
odd is defined as

TC(s) =
3s+ 1

2val2(3s+1)

where val2(x) is the 2-adic valuation of x, i.e., the exponent of the highest power of 2 dividing
x. The Collatz conjecture is equivalent to stating that for any s0 ∈ Z+

odd, the sequence s0, s1 =
TC(s0), s2 = TC(s1), . . . eventually reaches 1. Note that TC(1) = 1.
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This paper introduces a state-augmented system to analyze the map TC . By incorporating state
information related to s (mod 4), we can rigorously track the behavior of val2(3s+ 1) and reduce
the conjecture to a well-known descent property.

2 The State-Augmented System X

Definition 2.1 (State Space X). Let S = Z/4Z = {[0], [1], [2], [3]}, representing residue classes
modulo 4. The state space is defined as X = Z+

odd × S. An element of X is an ordered pair (s, σ),
where s ∈ Z+

odd and σ = [s (mod 4)] ∈ S. Since s is odd, σ ∈ {[1], [3]}.

The state component σ is crucial as it determines the primary behavior of val2(3s+ 1).

Definition 2.2 (Valuation k(s, σ) based on State). For (s, σ) ∈ X:

1. If σ = [1] (i.e., s ≡ 1 (mod 4)): Let s = 4m + 1 for some integer m ≥ 0. Then 3s + 1 =
3(4m + 1) + 1 = 12m + 4 = 4(3m + 1). So k(s, [1]) = val2(4(3m + 1)) = 2 + val2(3m + 1).
Since m ∈ Z≥0, 3m+ 1 can be even or odd, so val2(3m+ 1) ≥ 0. Therefore, k(s, [1]) ≥ 2.

2. If σ = [3] (i.e., s ≡ 3 (mod 4)): Let s = 4m + 3 for some integer m ≥ 0. Then 3s + 1 =
3(4m+3)+1 = 12m+9+1 = 12m+10 = 2(6m+5). Since m ∈ Z≥0, 6m is even, so 6m+5
is an odd integer. Thus val2(6m+ 5) = 0. Therefore, k(s, [3]) = val2(2(6m+ 5)) = 1.

Definition 2.3 (State-Augmented Operator TX). The operator TX : X → X is defined for (s, σ) ∈
X as:

1. Let k = k(s, σ) be the valuation from Definition 2.2.

2. Calculate s′ = 3s+1
2k

. (Note s′ is always an odd positive integer).

3. Determine the new state component σ′ = [s′ (mod 4)].

4. Then TX(s, σ) = (s′, σ′).

The state (1, [1]) is a fixed point of TX . If s = 1, then m = 0 (since 1 = 4(0) + 1), so σ = [1].
k(1, [1]) = 2 + val2(3(0) + 1) = 2 + 0 = 2. s′ = (3(1) + 1)/22 = 4/4 = 1. σ′ = [1 (mod 4)] = [1].
Thus, TX(1, [1]) = (1, [1]).

3 Convergence Analysis for Positive Integers

Theorem 3.1. For any initial state (s0, σ0) where s0 ∈ Z+
odd and σ0 = [s0 (mod 4)], the sequence

(si, σi) = T i
X(s0, σ0) eventually reaches the fixed point (1, [1]) if and only if the Collatz conjecture is

true. Specifically, the problem reduces to showing that an intermediate integer m∗ generated during
the process (or a subsequent term in its Collatz sequence) is eventually strictly less than s0 for
s0 > 1.

The proof relies on strong induction on s0. The base case s0 = 1 is established. Inductive
Hypothesis (IH): Assume that for all odd positive integers j′ such that 1 ≤ j′ < s0, the sequence
generated by TX starting from (j′, [j′ (mod 4)]) eventually reaches (1, [1]).
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Lemma 3.2 (Descent Step for σ = [1). ]Let(s, [1])beastatewiths ∈ Z+
odd, s > 1, so s ≡ 1 (mod 4).

Let TX(s, [1]) = (s′, σ′). Then s = 4m+1 for some integer m = (s− 1)/4 ≥ 1. The next s-value is
s′ = TC(m). Critically, m < s.

Proof. If s ≡ 1 (mod 4) and s > 1, then s = 4m+ 1 for some integer m ≥ 1. From Definition 2.2,

k(s, [1]) = 2 + val2(3m + 1). Then s′ = 3(4m+1)+1

22+val2(3m+1) = 12m+4
4·2val2(3m+1) = 4(3m+1)

4·2val2(3m+1) = 3m+1
2val2(3m+1) =

TC(m). Since s = 4m+ 1 and m ≥ 1 (as s > 1), it follows that m < s.

Lemma 3.3 (Finite Transition from σ = [3). toσ = [1] and Subsequent Descent Argument] Let
(s0, [3]) be a state with s0 ∈ Z+

odd, so s0 ≡ 3 (mod 4).

(a) The sequence (si, σi) = T i
X(s0, [3]) will reach a state (sj0 , [1]) for some j0 ≥ 1. This j0 is the

smallest such positive integer, and j0 ≤ val2(s0 + 1)− 1.

(b) Let s∗ = sj0. The next step according to Lemma 3.2 involves m∗ = (s∗−1)/4. For the Collatz
conjecture to hold via this inductive path, the sequence starting from m∗ must converge to 1,
which is true by IH if m∗ < s0. If m∗ ≥ s0, convergence relies on the general truth of the
Collatz conjecture for m∗.

Proof. (a) Let si ≡ 3 (mod 4). Then k(si, [3]) = 1, so si+1 = (3si + 1)/2. Consider si+1 + 1 =
(3si+1)/2+1 = (3si+3)/2 = 3(si+1)/2. Thus, val2(si+1+1) = val2(3(si+1)/2) = val2(si+1)−1.
Since s0 ≡ 3 (mod 4), s0 + 1 ≡ 0 (mod 4), so val2(s0 + 1) ≥ 2. If the sequence s0, s1, . . . , sj0−1 are
all ≡ 3 (mod 4), then val2(sj0 + 1) = val2(s0 + 1)− j0. Since sj0 ∈ Z+

odd, sj0 + 1 is a positive even
integer, so val2(sj0 + 1) ≥ 1. The sequence must reach a state sj0 such that val2(sj0 + 1) = 1. If
val2(sj0 + 1) = 1, then sj0 + 1 ≡ 2 (mod 4), which implies sj0 ≡ 1 (mod 4). Thus, σj0 = [1]. This
occurs when j0 = val2(s0 + 1)− 1. The number of steps j0 is therefore finite and bounded.

(b) Let s∗ = sj0 be the first term in the sequence such that s∗ ≡ 1 (mod 4). The subsequent
step involves m∗ = (s∗ − 1)/4. We examine if m∗ < s0. The term sj0 can be expressed as

sj0 = 3j0s0+(3j0−2j0 )
2j0

. Then m∗ = s∗−1
4 = 1

4

(
3j0s0+3j0−2j0

2j0
− 1

)
= 3j0s0+3j0−2j0+1

2j0+2 . The condition

m∗ < s0 is 3j0s0 + 3j0 − 2j0+1 < s0 · 2j0+2, which simplifies to s0(2
j0+2 − 3j0) > 3j0 − 2j0+1. This

inequality holds if 2j0+2 − 3j0 > 0 (i.e., j0 ≤ 3) and s0 is not excessively small.

• If j0 = 1 (s0 ≡ 3 (mod 8)): m∗ = (3s0 − 1)/8. m∗ < s0 ⇐⇒ 5s0 > −1, true for s0 ∈ Z+
odd.

• If j0 = 2 (s0 ≡ 7 (mod 16) pattern): m∗ = (9s0 + 1)/16. m∗ < s0 ⇐⇒ 7s0 > 1, true for
s0 ∈ Z+

odd.

• If j0 = 3 (s0 ≡ 15 (mod 32) pattern): m∗ = (27s0 + 19)/32. m∗ < s0 ⇐⇒ 5s0 > 19, true
for s0 ≥ 5.

• If j0 = 4 (e.g., s0 = 31 ≡ 31 (mod 64) pattern): m∗ = (81s0+55)/128. For s0 = 31, s∗ = 161,
m∗ = 40. Here m∗ = 40 > s0 = 31.

Thus, m∗ < s0 is not universally guaranteed. When m∗ ≥ s0, the inductive hypothesis cannot be
directly applied to m∗ to prove convergence for s0 based on m∗ < s0. The convergence then relies
on the Collatz conjecture holding true for m∗.
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Proof of Theorem 3.1. We proceed by strong induction on s0 ∈ Z+
odd. Base Case: s0 = 1. TX(1, [1]) =

(1, [1]). The sequence converges.
Inductive Hypothesis (IH): Assume that for all odd j′ ∈ Z+

odd with 1 ≤ j′ < s0, T k
X(j′, [j′

(mod 4)]) reaches (1, [1]) for some k.
Consider s0 > 1. Case 1: s0 ≡ 1 (mod 4). By Lemma 3.2, TX(s0, [1]) = (s1, σ1) where

s1 = TC(m) and m = (s0 − 1)/4 < s0. If m is odd, by IH, the sequence from (m, [m (mod 4)])
converges. Since s1 = TC(m) is the first term, the sequence from s1 converges. If m is even
(m = 2pj′odd, p ≥ 1), then TC(m) = TC(j

′
odd). Since j′odd ≤ m < s0, by IH, the sequence from j′odd

converges. So the sequence from s1 converges. Thus, if s0 ≡ 1 (mod 4), the sequence from (s0, σ0)
converges.

Case 2: s0 ≡ 3 (mod 4). By Lemma 3.3(a), after j0 = val2(s0+1)−1 steps, the sequence reaches
(s∗, [1]) where s∗ ≡ 1 (mod 4). The next step is TX(s∗, [1]) = (s∗∗, σ∗∗) where s∗∗ = TC(m

∗) and
m∗ = (s∗ − 1)/4. As shown in Lemma 3.3(b), m∗ is not always less than s0. If m∗ < s0, then by
IH (applied to m∗ or its first odd part), the sequence from m∗ converges, and thus the sequence
from s0 converges. If m∗ ≥ s0 (e.g., for s0 = 31, m∗ = 40), the convergence of the sequence from s0
depends on the convergence of the sequence from m∗. The Collatz conjecture asserts that all such
sequences (including the one for m∗) converge to 1. Assuming the truth of the conjecture for m∗,
the sequence for s0 also converges.

This framework demonstrates that every Collatz sequence for s0 > 1 either directly reduces its
primary argument via m = (s0 − 1)/4 < s0, or it transitions in a finite, bounded number of steps
to a state from which it reduces its primary argument to m∗ = (s∗ − 1)/4. The Collatz conjecture
is true if and only if this process of generating m or m∗ always leads to a sequence that eventually
reaches 1. This is equivalent to the standard assertion that no Collatz sequence for n ∈ Z+ diverges
or enters a cycle other than 1 → 4 → 2 → 1.

4 Discussion and Conclusion

The state-augmented system X = Z+
odd × (Z/4Z) provides a structured framework for analyzing

the ”shortcut” Collatz map TC . The main contributions are:

1. A clear case distinction based on s (mod 4):

• If s ≡ 1 (mod 4), the problem directly reduces to analyzing TC(m) for m = (s − 1)/4.
Since m < s, this is a direct descent for the inductive argument.

• If s ≡ 3 (mod 4), the operator TX applies s → (3s + 1)/2 repeatedly. We proved this
phase is finite, lasting j0 = val2(s0 + 1) − 1 steps, until a state (s∗, [1]) with s∗ ≡ 1
(mod 4) is reached.

2. The problem then reduces to analyzing TC(m
∗) for m∗ = (s∗ − 1)/4.

The Collatz conjecture hinges on the behavior of the sequence starting from m∗. While for many
s0, m

∗ < s0 (allowing direct application of the inductive hypothesis), this is not universally true
(e.g., s0 = 31 =⇒ m∗ = 40). In such cases, the convergence of the original sequence from s0 relies
on the (conjectured) convergence of the sequence from m∗.

This framework effectively reduces the Collatz conjecture to demonstrating that the ”effective
descent argument” m∗ (or a term in its subsequent Collatz sequence) is always eventually smaller
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than the original s0 that generated it through the s ≡ 3 (mod 4) path. This is a known hard aspect
of the conjecture, often referred to as proving ”eventual decrease” or ”non-divergence.”

Computational examples illustrate this. For s0 = 31: j0 = val2(31 + 1) − 1 = val2(32) − 1 =

5 − 1 = 4. s0 = 31(σ = [3])
k=1−−→ s1 = 47(σ = [3])

k=1−−→ s2 = 71(σ = [3])
k=1−−→ s3 = 107(σ =

[3])
k=1−−→ s∗ = s4 = 161(σ = [1]). Then m∗ = (161 − 1)/4 = 40. Although m∗ = 40 > s0 = 31,

the Collatz sequence for m∗ = 40 is 40 → 20 → 10 → 5 → · · · → 1. Since the sequence for m∗

converges, the sequence for s0 = 31 also converges.
This state-augmented analysis rigorously structures the initial steps of any Collatz sequence

and pinpoints that the conjecture’s truth rests on the global convergence behavior, specifically
that no sequence can escape reduction to smaller values indefinitely. Prior analyses showing the
unreachability of known 2-adic attractors outside Z+ from positive integers further support focusing
on the dynamics within Z+.
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