Modular Constraints and Distribution in Twin Prime Indexing: An Undersampling Perspective

AUTHOR 7B7545EB2B5B22A28204066BD292A036 5D4989260318CDF4A7A0407C272E9AFB

April 25, 2025

Abstract

The sums of twin prime pairs, S = p + (p + 2) = 2(p + 1), appear erratic, yet modular arithmetic unveils hidden order. Viewing this as "undersampling" akin to signal processing, we analyze the sequence via C = p + 1 = 6k for twin primes (p, p + 2), p = 6k - 1 > 3. We prove that the index k is barred from specific residue classes modulo 5, 7, and 11 due to the twin prime condition. Statistical analysis of k for p < 1,000,000(8168 pairs with p > 5) reveals a persistent bias modulo 5, with $k \equiv 2$ at 40.21% in a 4:3:3 ratio, while distributions modulo 7 and 11 are nearuniform. This offers a fresh perspective on twin prime distribution.

Keywords: twin primes, modular arithmetic, residue distribution, prime constellations, Hardy-Littlewood conjecture

1 Introduction

Twin primes—pairs (p, p+2) where both are prime—intrigue number theorists with their elusive patterns, conjectured infinite by Hardy and Littlewood [1]. Their sums, $S_n = p_n + (p_n + 2) = 2(p_n + 1)$, begin 8, 12, 24, 36, 60, 84, ... from pairs $(3, 5), (5, 7), (11, 13), \ldots$ Though irregular, these sums yield to modular analysis.

We draw from signal processing: undersampling a high-frequency signal creates aliases—lower frequencies masking the original. Similarly, applying mod nto S_n "samples" it, producing residues that seem chaotic but reflect prime structure. We simplify to C = p+1 = 6k (for p > 3), derive constraints on $k \pmod{5}$, $k \pmod{7}$, and $k \pmod{11}$, and examine their distribution for p < 1,000,000, uncovering a persistent bias modulo 5.

2 The Core Signal C = p + 1

Primes p > 3 are $6j \pm 1$. For twin primes (p, p+2) with p > 3, p = 6j + 1 makes p+2 = 6j + 3 = 3(2j + 1), composite. Thus, p must be of the form p = 6k - 1 for some integer $k \ge 1$. Consequently:

- The midpoint is C = p + 1 = 6k.
- The sum is S = 2(p+1) = 12k.

The sequence $C_n = p_n + 1$ is 4, 6, 12, 18, 30, 42, For p > 3, C = 6k tracks twin prime positions via the index k = (p+1)/6. The pair (3, 5) gives C = 4, an outlier. The pair (5, 7) corresponds to k = 1. The pair (11, 13) corresponds to k = 2.

3 Structural Constraints on k

The twin prime condition—that both p = 6k - 1 and p + 2 = 6k + 1 are prime—restricts the possible residue classes of k.

Proposition 3.1. For twin primes (p, p+2) with p > 5, the index k = (p+1)/6 satisfies $k \not\equiv 1 \pmod{5}$ and $k \not\equiv 4 \pmod{5}$.

- *Proof.* If $k \equiv 1 \pmod{5}$, then $p = 6k 1 \equiv 6(1) 1 = 5 \equiv 0 \pmod{5}$. For p to be prime, p must be 5. This case corresponds only to the pair (5,7) where k = 1, and does not occur for p > 5.
 - If $k \equiv 4 \pmod{5}$, then $p+2 = 6k+1 \equiv 6(4)+1 = 25 \equiv 0 \pmod{5}$. For p+2 to be prime, p+2 must be 5, which implies p=3. The pair (3,5) is not associated with an index $k \geq 1$ via p = 6k-1. For p > 3, p+2 > 5, so if p+2 is divisible by 5, it must be composite. Thus, $k \equiv 4 \pmod{5}$ is impossible for p > 3.

Therefore, for p > 5, k cannot be congruent to 1 or 4 modulo 5.

Proposition 3.2. For twin primes (p, p+2) with p > 5, the index k = (p+1)/6 satisfies $k \not\equiv 1 \pmod{7}$ and $k \not\equiv 6 \pmod{7}$.

- *Proof.* If $k \equiv 1 \pmod{7}$, then $p+2 = 6k+1 \equiv 6(1)+1 = 7 \equiv 0 \pmod{7}$. For p+2 to be prime, p+2 must be 7. This implies p = 5. This case corresponds only to the pair (5,7) where k = 1, and does not occur for p > 5.
 - If $k \equiv 6 \pmod{7}$, then $p = 6k 1 \equiv 6(6) 1 = 36 1 = 35 \equiv 0 \pmod{7}$. For p to be prime, p must be 7. However, (7,9) is not a twin prime pair as 9 is composite. Thus, $k \equiv 6 \pmod{7}$ is impossible for any twin prime pair (p, p + 2).

Therefore, for p > 5, k cannot be congruent to 1 or 6 modulo 7.

Proposition 3.3. For twin primes (p, p+2) with p > 11, the index k = (p+1)/6 satisfies $k \not\equiv 2 \pmod{11}$ and $k \not\equiv 9 \pmod{11}$.

- *Proof.* If $k \equiv 2 \pmod{11}$, then $p = 6k 1 \equiv 6(2) 1 = 11 \equiv 0 \pmod{11}$. For p to be prime, p = 11. This corresponds to the pair (11, 13), with k = 2, and does not occur for p > 11.
 - If $k \equiv 9 \pmod{11}$, then $p+2 = 6k+1 \equiv 6(9)+1 = 54+1 = 55 \equiv 0 \pmod{11}$. For p+2 to be prime, $p+2 = 11 \implies p = 9$, which is composite. For p > 3, p+2 > 11, so if $p+2 \equiv 0 \pmod{11}$, it is composite. Thus, $k \equiv 9 \pmod{11}$ is impossible for p > 3.

Therefore, for p > 11, k cannot be congruent to 2 or 9 modulo 11.

Remark 3.4. These constraints are direct consequences of requiring p and p+2 not to be divisible by 5, 7, or 11 (except for the specific cases p = 5, p + 2 = 7, or p = 11). Similar constraints forbid k from residue classes modulo n where $6k \equiv \pm 1 \pmod{n}$ implies p or p+2 is divisible by n and cannot be prime (unless p = n or p + 2 = n, which are handled as special cases).

4 Statistical Distribution of Allowed Residues

We analyzed the distribution of the index k = (p + 1)/6 within the allowed residue classes modulo 5, 7, and 11. The dataset includes all 8169 twin prime pairs (p, p + 2) such that p < 1,000,000 [4], computed using a sieve algorithm implemented in Python with the SymPy library for primality testing. The pair (3,5) is excluded from this analysis, leaving $N_k = 8168$ pairs. The pair (5,7)corresponds to k = 1, and the pair (11,13) to k = 2. These specific values are included in the total counts but are noted as forbidden for p > 5 or p > 11 in the relevant propositions and tables.

The frequencies of k (mod 5) for these 8168 pairs are shown in Table 1. A chi-squared test confirms the distribution deviates significantly from uniformity (expected 2722.67 per class, $\chi^2 \approx 219.67$, 2 d.f., $p < 10^{-6}$).

Residue r	Constraint	Count	Percentage	Approx. Ratio
0	Allowed	2450	29.99%	3
1	Forbidden $(p > 5)$	0	0.00%	_
2	Allowed	3284	40.21%	4
3	Allowed	2434	29.80%	3
4	Forbidden $(p > 3)$	0	0.00%	_
Total Allowed		8168	100.00%	

Table 1: Distribution of $k = (p+1)/6 \pmod{5}$ for twin primes $p < 1,000,000 (N_k = 8168)$.

Figure 1: Distribution of $k = (p + 1)/6 \pmod{5}$ for twin primes with p < 1,000,000 (excluding p = 3).

The frequencies of k (mod 7) for these 8168 pairs are shown in Table 2. A chi-squared test indicates the distribution is consistent with uniformity (expected 1633.6 per class, $\chi^2 \approx 0.15$, 4 d.f., $p \approx 0.999$).

Table 2: Distribution of $k = (p+1)/6 \pmod{7}$ for twin primes $p < 1,000,000 (N_k = 8168)$.

Residue r	Constraint	Count	Percentage
0	Allowed	1641	20.09%
1	Forbidden $(p > 5)$	0	0.00%
2	Allowed	1634	20.01%
3	Allowed	1633	19.99%
4	Allowed	1628	19.93%
5	Allowed	1632	19.98%
6	Forbidden $(p > 3)$	0	0.00%
Total Allowed		8168	100.00%

The frequencies of k (mod 11) for these 8168 pairs are shown in Table 3. A chi-squared test supports uniformity (expected 907.56 per class, $\chi^2 \approx 0.37$, 8 d.f., $p \approx 0.999$).

Remark 4.1. The distribution modulo 5 (Table 1, Figure 1) exhibits a pronounced and statistically significant bias: $k \equiv 2 \pmod{5}$ accounts for 40.21% of cases, significantly more than $k \equiv 0 \pmod{29.99\%}$ or $k \equiv 3 \pmod{9.80\%}$, maintaining an approximate 4:3:3 ratio. In contrast, the distributions modulo 7 (Table 2) and modulo 11 (Table 3) are remarkably uniform across their respective al-

Residue r	Constraint	Count	Percentage
0	Allowed	906	11.09%
1	Allowed	911	11.15%
2	Forbidden $(p > 11)$	0	0.00%
3	Allowed	905	11.08%
4	Allowed	908	11.12%
5	Allowed	907	11.10%
6	Allowed	912	11.16%
7	Allowed	904	11.07%
8	Allowed	908	11.12%
9	Forbidden $(p > 3)$	0	0.00%
10	Allowed	907	11.10%
Total Allowed		8168	100.00%

Table 3: Distribution of $k = (p+1)/6 \pmod{11}$ for twin primes $p < 1,000,000 (N_k = 8168)$.

lowed classes (1/5 and 1/9), with p-values ≈ 0.999 indicating consistency with equidistribution. The modulo 5 bias appears to be a distinctive feature not observed for these higher moduli. The counts for forbidden classes reflect the single occurrences of k = 1 (for p = 5) and k = 2 (for p = 11) within the full dataset, which are excluded when considering p > 5 or p > 11.

5 Discussion

The derived constraints on $k \pmod{5}$, $k \pmod{7}$, and $k \pmod{11}$ (Section 3) demonstrate the twin prime condition's structural impact, barring specific residue classes. The statistical analysis (Section 4) reveals a more nuanced picture: a pronounced bias modulo 5, with $k \equiv 2$ dominating at 40.21% in a 4:3:3 ratio, contrasts sharply with the near-uniform distributions modulo 7 and 11, where allowed classes align closely with expected frequencies (1/5 and 1/9, respectively). This modulo 5 bias, persistent across 8168 twin prime pairs up to p < 1,000,000, suggests that the twin prime condition induces fine-grained distributional effects beyond simple exclusions.

The Hardy-Littlewood conjecture [1] offers a potential heuristic explanation. Its singular series, involving local density factors for each modulus, may assign higher weights to $k \equiv 2 \pmod{5}$ due to arithmetic constraints on 6k - 1 and 6k + 1. In contrast, the uniformity modulo 7 and 11 aligns with equidistribution expectations for larger moduli, where local factors are less discriminatory. The undersampling analogy frames modular arithmetic as a filter, revealing both hard constraints (forbidden classes) and statistical preferences (the modulo 5 bias).

Future work includes extending computations to larger p (e.g., $p < 10^9$,

involving approximately 70,000 pairs), analyzing additional moduli (e.g., 13, 17), and comparing with other prime constellations (e.g., cousin primes p, p+4). A deeper analysis of the Hardy-Littlewood singular series or sieve methods [3] could provide theoretical insight into the modulo 5 bias, potentially connecting to broader conjectures on prime distributions.

References

- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, *Acta Mathematica*, 44 (1923), 1–70.
- [2] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- [3] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, 1974.
- [4] The On-Line Encyclopedia of Integer Sequences, Sequence A007508 (Number of twin prime pairs (p, p+2)), https://oeis.org/A007508. Accessed April 2025.