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Abstract

The sums of twin prime pairs, S = p + (p + 2) = 2(p + 1), appear
erratic, yet modular arithmetic unveils hidden order. Viewing this as
”undersampling” akin to signal processing, we analyze the sequence via
C = p+ 1 = 6k for twin primes (p, p+ 2), p = 6k − 1 > 3. We prove that
the index k is barred from specific residue classes modulo 5, 7, and 11 due
to the twin prime condition. Statistical analysis of k for p < 1, 000, 000
(8168 pairs with p > 5) reveals a persistent bias modulo 5, with k ≡ 2
at 40.21% in a 4:3:3 ratio, while distributions modulo 7 and 11 are near-
uniform. This offers a fresh perspective on twin prime distribution.

Keywords: twin primes, modular arithmetic, residue distribution, prime con-
stellations, Hardy-Littlewood conjecture

1 Introduction

Twin primes—pairs (p, p+2) where both are prime—intrigue number theorists
with their elusive patterns, conjectured infinite by Hardy and Littlewood [1].
Their sums, Sn = pn + (pn + 2) = 2(pn + 1), begin 8, 12, 24, 36, 60, 84, . . . from
pairs (3, 5), (5, 7), (11, 13), . . .. Though irregular, these sums yield to modular
analysis.

We draw from signal processing: undersampling a high-frequency signal cre-
ates aliases—lower frequencies masking the original. Similarly, applying mod n
to Sn ”samples” it, producing residues that seem chaotic but reflect prime struc-
ture. We simplify to C = p+1 = 6k (for p > 3), derive constraints on k (mod 5),
k (mod 7), and k (mod 11), and examine their distribution for p < 1, 000, 000,
uncovering a persistent bias modulo 5.
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2 The Core Signal C = p+ 1

Primes p > 3 are 6j±1. For twin primes (p, p+2) with p > 3, p = 6j+1 makes
p+ 2 = 6j + 3 = 3(2j + 1), composite. Thus, p must be of the form p = 6k − 1
for some integer k ≥ 1. Consequently:

• The midpoint is C = p+ 1 = 6k.

• The sum is S = 2(p+ 1) = 12k.

The sequence Cn = pn + 1 is 4, 6, 12, 18, 30, 42, . . .. For p > 3, C = 6k tracks
twin prime positions via the index k = (p + 1)/6. The pair (3, 5) gives C = 4,
an outlier. The pair (5, 7) corresponds to k = 1. The pair (11, 13) corresponds
to k = 2.

3 Structural Constraints on k

The twin prime condition—that both p = 6k − 1 and p + 2 = 6k + 1 are
prime—restricts the possible residue classes of k.

Proposition 3.1. For twin primes (p, p+2) with p > 5, the index k = (p+1)/6
satisfies k ̸≡ 1 (mod 5) and k ̸≡ 4 (mod 5).

Proof. • If k ≡ 1 (mod 5), then p = 6k − 1 ≡ 6(1) − 1 = 5 ≡ 0 (mod 5).
For p to be prime, p must be 5. This case corresponds only to the pair
(5, 7) where k = 1, and does not occur for p > 5.

• If k ≡ 4 (mod 5), then p+ 2 = 6k + 1 ≡ 6(4) + 1 = 25 ≡ 0 (mod 5). For
p+2 to be prime, p+2 must be 5, which implies p = 3. The pair (3, 5) is
not associated with an index k ≥ 1 via p = 6k − 1. For p > 3, p+ 2 > 5,
so if p+ 2 is divisible by 5, it must be composite. Thus, k ≡ 4 (mod 5) is
impossible for p > 3.

Therefore, for p > 5, k cannot be congruent to 1 or 4 modulo 5.

Proposition 3.2. For twin primes (p, p+2) with p > 5, the index k = (p+1)/6
satisfies k ̸≡ 1 (mod 7) and k ̸≡ 6 (mod 7).

Proof. • If k ≡ 1 (mod 7), then p+2 = 6k+1 ≡ 6(1)+1 = 7 ≡ 0 (mod 7).
For p + 2 to be prime, p + 2 must be 7. This implies p = 5. This case
corresponds only to the pair (5, 7) where k = 1, and does not occur for
p > 5.

• If k ≡ 6 (mod 7), then p = 6k− 1 ≡ 6(6)− 1 = 36− 1 = 35 ≡ 0 (mod 7).
For p to be prime, p must be 7. However, (7, 9) is not a twin prime pair
as 9 is composite. Thus, k ≡ 6 (mod 7) is impossible for any twin prime
pair (p, p+ 2).

Therefore, for p > 5, k cannot be congruent to 1 or 6 modulo 7.
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Proposition 3.3. For twin primes (p, p+2) with p > 11, the index k = (p+1)/6
satisfies k ̸≡ 2 (mod 11) and k ̸≡ 9 (mod 11).

Proof. • If k ≡ 2 (mod 11), then p = 6k− 1 ≡ 6(2)− 1 = 11 ≡ 0 (mod 11).
For p to be prime, p = 11. This corresponds to the pair (11, 13), with
k = 2, and does not occur for p > 11.

• If k ≡ 9 (mod 11), then p + 2 = 6k + 1 ≡ 6(9) + 1 = 54 + 1 = 55 ≡ 0
(mod 11). For p+2 to be prime, p+2 = 11 =⇒ p = 9, which is composite.
For p > 3, p + 2 > 11, so if p + 2 ≡ 0 (mod 11), it is composite. Thus,
k ≡ 9 (mod 11) is impossible for p > 3.

Therefore, for p > 11, k cannot be congruent to 2 or 9 modulo 11.

Remark 3.4. These constraints are direct consequences of requiring p and p+2
not to be divisible by 5, 7, or 11 (except for the specific cases p = 5, p+ 2 = 7,
or p = 11). Similar constraints forbid k from residue classes modulo n where
6k ≡ ±1 (mod n) implies p or p+2 is divisible by n and cannot be prime (unless
p = n or p+ 2 = n, which are handled as special cases).

4 Statistical Distribution of Allowed Residues

We analyzed the distribution of the index k = (p + 1)/6 within the allowed
residue classes modulo 5, 7, and 11. The dataset includes all 8169 twin prime
pairs (p, p + 2) such that p < 1, 000, 000 [4], computed using a sieve algorithm
implemented in Python with the SymPy library for primality testing. The pair
(3, 5) is excluded from this analysis, leaving Nk = 8168 pairs. The pair (5, 7)
corresponds to k = 1, and the pair (11, 13) to k = 2. These specific values are
included in the total counts but are noted as forbidden for p > 5 or p > 11 in
the relevant propositions and tables.

The frequencies of k (mod 5) for these 8168 pairs are shown in Table 1. A
chi-squared test confirms the distribution deviates significantly from uniformity
(expected 2722.67 per class, χ2 ≈ 219.67, 2 d.f., p < 10−6).

Table 1: Distribution of k = (p + 1)/6 (mod 5) for twin primes p < 1, 000, 000
(Nk = 8168).

Residue r Constraint Count Percentage Approx. Ratio

0 Allowed 2450 29.99% 3
1 Forbidden (p > 5) 0 0.00% –
2 Allowed 3284 40.21% 4
3 Allowed 2434 29.80% 3
4 Forbidden (p > 3) 0 0.00% –

Total Allowed 8168 100.00%
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Figure 1: Distribution of k = (p + 1)/6 (mod 5) for twin primes with p <
1, 000, 000 (excluding p = 3).

The frequencies of k (mod 7) for these 8168 pairs are shown in Table 2.
A chi-squared test indicates the distribution is consistent with uniformity (ex-
pected 1633.6 per class, χ2 ≈ 0.15, 4 d.f., p ≈ 0.999).

Table 2: Distribution of k = (p + 1)/6 (mod 7) for twin primes p < 1, 000, 000
(Nk = 8168).

Residue r Constraint Count Percentage

0 Allowed 1641 20.09%
1 Forbidden (p > 5) 0 0.00%
2 Allowed 1634 20.01%
3 Allowed 1633 19.99%
4 Allowed 1628 19.93%
5 Allowed 1632 19.98%
6 Forbidden (p > 3) 0 0.00%

Total Allowed 8168 100.00%

The frequencies of k (mod 11) for these 8168 pairs are shown in Table 3. A
chi-squared test supports uniformity (expected 907.56 per class, χ2 ≈ 0.37, 8
d.f., p ≈ 0.999).

Remark 4.1. The distribution modulo 5 (Table 1, Figure 1) exhibits a pro-
nounced and statistically significant bias: k ≡ 2 (mod 5) accounts for 40.21%
of cases, significantly more than k ≡ 0 (29.99%) or k ≡ 3 (29.80%), maintain-
ing an approximate 4:3:3 ratio. In contrast, the distributions modulo 7 (Table
2) and modulo 11 (Table 3) are remarkably uniform across their respective al-
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Table 3: Distribution of k = (p+1)/6 (mod 11) for twin primes p < 1, 000, 000
(Nk = 8168).

Residue r Constraint Count Percentage

0 Allowed 906 11.09%
1 Allowed 911 11.15%
2 Forbidden (p > 11) 0 0.00%
3 Allowed 905 11.08%
4 Allowed 908 11.12%
5 Allowed 907 11.10%
6 Allowed 912 11.16%
7 Allowed 904 11.07%
8 Allowed 908 11.12%
9 Forbidden (p > 3) 0 0.00%
10 Allowed 907 11.10%

Total Allowed 8168 100.00%

lowed classes (1/5 and 1/9), with p-values ≈ 0.999 indicating consistency with
equidistribution. The modulo 5 bias appears to be a distinctive feature not
observed for these higher moduli. The counts for forbidden classes reflect the
single occurrences of k = 1 (for p = 5) and k = 2 (for p = 11) within the full
dataset, which are excluded when considering p > 5 or p > 11.

5 Discussion

The derived constraints on k (mod 5), k (mod 7), and k (mod 11) (Section
3) demonstrate the twin prime condition’s structural impact, barring specific
residue classes. The statistical analysis (Section 4) reveals a more nuanced
picture: a pronounced bias modulo 5, with k ≡ 2 dominating at 40.21% in a
4:3:3 ratio, contrasts sharply with the near-uniform distributions modulo 7 and
11, where allowed classes align closely with expected frequencies (1/5 and 1/9,
respectively). This modulo 5 bias, persistent across 8168 twin prime pairs up
to p < 1, 000, 000, suggests that the twin prime condition induces fine-grained
distributional effects beyond simple exclusions.

The Hardy-Littlewood conjecture [1] offers a potential heuristic explanation.
Its singular series, involving local density factors for each modulus, may assign
higher weights to k ≡ 2 (mod 5) due to arithmetic constraints on 6k − 1 and
6k+1. In contrast, the uniformity modulo 7 and 11 aligns with equidistribution
expectations for larger moduli, where local factors are less discriminatory. The
undersampling analogy frames modular arithmetic as a filter, revealing both
hard constraints (forbidden classes) and statistical preferences (the modulo 5
bias).

Future work includes extending computations to larger p (e.g., p < 109,
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involving approximately 70,000 pairs), analyzing additional moduli (e.g., 13,
17), and comparing with other prime constellations (e.g., cousin primes p, p+4).
A deeper analysis of the Hardy-Littlewood singular series or sieve methods [3]
could provide theoretical insight into the modulo 5 bias, potentially connecting
to broader conjectures on prime distributions.
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